Carnegie Mellon University

Enforcing robust control guarantees within neural network policies Priya L. Donti¹, Melrose Roderick¹, Mahyar Fazlyab², and J. Zico Kolter^{1,3} ¹Carnegie Mellon University ²Johns Hopkins University ³Bosch Center for AI

Motivation

Deep RL methods often give no safety or stability guarantees

→ Dealbreaker for safety-critical systems (e.g., airplanes, power grids)

Robust control gives provably stabilizing policies, but they are simple (e.g., linear) → Limited overall **performance**

Goal: Bridge the gap by enforcing robust control criteria within neural network policies trained via RL

Related work

Safe RL: Aims to learn "safe" control policies by making smoothness assumptions about dynamics; no provable guarantees

Robust control + RL: Efforts combining control-theoretic ideas with RL. Predominantly limited to H_{∞} control.

Differentiable optimization layers: NN layers with optimization problem as forward pass, and backward pass via implicit function theorem. We employ such layers in our work.

We present a method for provably robust control via deep RL, which embeds a differentiable projection layer into a neural network policy in order to enforce robust control stability criteria.

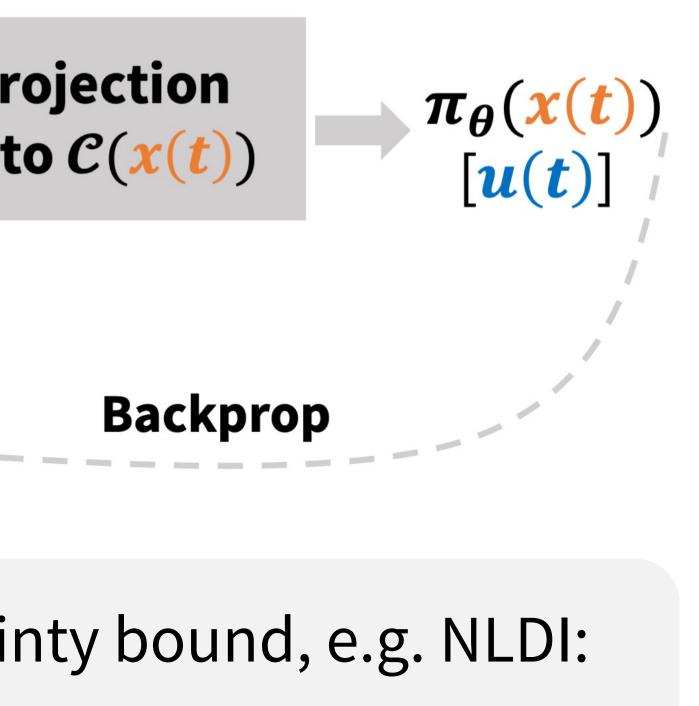
x(t)	Deep network $\widehat{\pi}_{ heta}$	$\widehat{\pi}_{\theta}(x(t))$	Pre

System: Unknown, nonlinear with uncertainty bound, e.g. NLDI: $\dot{x}(t) \in Ax(t) + Bu(t) + Gw(t)$ s.t. $||w(t)||_2 \le ||Cx(t) + Du(t)||_2$

Non-robust m	ethods
--------------	--------

					Nobastinethoas					V
Environmen	t	LQR	MBP	PPO	Robust LQR	Robust MPC	RARL	Robust MBP*	Robust PPO*	•
Generic NLDI	0	373	16	21	253	253	27	69	33	•
(D=0)	Α	<i>ι</i>	Instable –		1009	873	unstable	1111	2321	
Generic NLDI	0	278	15	82	199	199	147	69	80	
$(D \neq 0)$	Α	<i>ι</i>	Instable –		1900	1667	unstable	1855	1669	
Cart-pole O A	0	36.3	3.6	7.2	10.2	10.2	8.3	9.7	8.4	•
	Α	— unsta	ble —	172.1	42.2	47.8	41.2	50.0	16.3	
Quadrotor	0	5.4	2.5	7.7	13.8	13.8	12.2	11.0	8.3	
	Α	unstable	545.7	137.6	64.8	$unstable^{\dagger}$	63.1	25.7	26.5	•
Microgrid	0	4.59	0.60	0.61	0.73	0.73	0.67	0.61	0.61	
	Α	<i>ι</i>	instable –		0.99	0.92	2.17	7.68	8.91	
										<i>6</i>

Approach



Step 2: Construct policy π_{θ}

- Construct deep network $\hat{\pi}_{\theta}$

Results

Robust methods

Step 1: Construct set of stabilizing actions • Obtain Lyapunov function V via robust control • Compute $\mathcal{C}(x(t)) \coloneqq \{ u(t) \mid \dot{V}(x(t)) \leq -\alpha V(x(t)) \forall t \}$

• Policy is then $\pi_{\theta}(x(t)) = \operatorname{Proj}_{\mathcal{C}(x(t))}(\hat{\pi}_{\theta}(x(t)))$

Step 3: Train end-to-end using deep RL techniques Gradient through projection via implicit function thm

We test our method under two settings:

- Original dynamics ("average case")
- Adversarial dynamics ("worst case")

Our method

- improves "average-case" performance over robust baselines
- remains stable under "worst-case" **dynamics** (unlike non-robust baselines)